CHEMISCHE BERICHTE

In Fortsetzung der

BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

herausgegeben von der

GESELLSCHAFT DEUTSCHER CHEMIKER

113. Jahrg. Nr. 7

S. 2333 - 2588

Oxidation von Diboran(4)-Verbindungen mit Chloraminen

Wolfgang Haubold* und Konrad Zurmühl

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80

Eingegangen am 25. Oktober 1979

Die Bor-Bor-Bindungen in den Diboran(4)-Molekülen $(Me_2N)_2B - B(NMe_2)_2$ (1), $(Me_2N)CIB - BCl(NMe_2)$ (5) und $Cl_2B - BCl_2$ (8) wie auch in B_4Cl_4 werden durch die Chloramine Me_2NCI (2), $MeNCl_2$ und $EtNCl_2$ (9) gespalten. Als Oxidationsprodukte lassen sich BCl_3 oder das entsprechende Aminoboran und Diborylamine isolieren. Die Umsetzung von 8 und 2 führt zusätzlich zur Bildung von $Me_2NH \cdot BCl_3$. – Elementares Chlor spaltet in 1 nicht nur die B - Bsondern auch die B - N-Bindung; Me_2NCl ist eines der Reaktionsprodukte. – Die Eigenschaften des N-Ethylbis(dichlorboryl)amins (11) werden diskutiert.

Oxidation of Diborane(4) Molecules by Chloramines

The boron-boron bonds in the diborane(4) molecules $(Me_2N)_2B - B(NMe_2)_2$ (1), $(Me_2N)ClB - BCl(NMe_2)$ (5) and $Cl_2B - BCl_2$ (8) as in B_4Cl_4 are cleaved by the chloramines Me_2NCl (2), $MeNCl_2$ and $EtNCl_2$ (9). As oxidation products BCl_3 or the corresponding aminoborane and diborylamines can be isolated. The interaction of 8 and 2 leads to the formation of $Me_2NH \cdot BCl_3$ as additional product. – Elementary chlorine does not only cleave the B - B but also the B - N bond in 1, giving Me_2NCl as one of the reaction products. – The properties of the *N*-ethylbis(dichloroboryl)amine (11) are discussed.

Zur oxidierenden Spaltung der Bor-Bor-Bindung in Diboran(4)-Molekülen wurden bisher Halogene, Schwefel und Sauerstoff eingesetzt¹), die entweder zu reaktionsträge waren – wie Schwefel und Iod –, so daß beim eingesetzten B_2Cl_4 thermischer Zerfall auftrat, oder – wie bei Halogenen oder Sauerstoff – die verwendete Diborkomponente in die erwartete B¹¹¹-Verbindung überführten²⁻⁴). Zwischenstufen konnten nicht nachgewiesen werden.

Die Oxidation mit R_2NCl oder $RNCl_2$ (R = Alkyl) sollte bei Verwendung von z. B. B₂Cl₄ als Diboran(4)-Verbindung zu BCl₃ und Aminoboranen $R_2N - BCl_2$ bzw. Diborylaminen $Cl_2B - NR - BCl_2$ führen, sofern die Lewissäure-Lewisbase-Addukt-

Chem. Ber. 113, 2333-2341 (1980)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0707 – 2333 \$ 02.50/0 bildung oder andere Nebenreaktionen die B – B-Bindungsspaltung nicht vollkommen in den Hintergrund drängen. Uns interessierte sowohl das grundsätzliche Verhalten von Molekülen mit einer Bor-Bor-Bindung gegenüber Oxidationen als auch die Frage, ob mit Hilfe dieser Reaktion bisher nicht zugängliche Verbindungen hergestellt werden können. Als Borkomponenten setzten wir Tetrakis(dimethylamino)diboran(4) (1), 1,2-Dichlor-1,2-bis(dimethylamino)diboran(4) (5) und die Borchloride B_2Cl_4 sowie B_4Cl_4 ein. Reaktionspartner waren Chlordimethylamin (2) und Dichlormethylamin bzw. Dichlorethylamin (9)⁵⁾. Das Verhalten von BCl₃ gegenüber Chloraminen wurde in die Untersuchung einbezogen, soweit es nicht bereits von *Haasnoot*⁶⁾ untersucht worden war.

Umsetzungen mit Monochlordimethylamin

Die beiden Dimethylaminodiborverbindungen 1 und 5 werden durch Me₂NCl (2) bei Raumtemperatur in Stunden zu Chlorbis(dimethylamino)boran (3) und Tris(dimethylamino)boran (4) bzw. Dichlordimethylaminoboran (6) oxidiert [Gl.(1) und (2a)]. In inerten Lösungsmitteln wie CCl_4 ist die Reaktion erst nach Tagen vollständig abgelaufen; gleichzeitig treten Nebenprodukte in höherer Konzentration auf.

Auf Grund seiner starken Akzeptoreigenschaften bindet das zunächst entstehende Aminoboran 6 noch nicht umgesetztes Me_2NCl (2) zum Addukt $Me_2NCl \cdot BCl_2(NMe_2)$. Der Ablauf der Oxidation läßt sich bei einer Umsetzung im Molverhältnis 1:2 besser erkennen [Gl. (2b)]. Dieses Verhalten von $Me_2N - BCl_2$ gegenüber Me_2NCl wird durch Vergleichsexperimente bestätigt.

$$(Me_2N)_2B - B(NMe_2)_2 + Me_2NC1 \rightarrow (Me_2N)_2BC1 + (Me_2N)_3B$$
 (1)
1 2 3 4

$$Me_{2}N_{B-B}NMe_{2} + 2 \qquad (Me_{2}N)_{2}BC1 + Me_{2}N-BC1_{2} \qquad (2a)$$

$$C1 - C1 + 2 2 - (Me_2N)_2BC1 + Me_2NBC1_2 \cdot NMe_2C1$$
(2b)
3

$$(Me_2N)_2B-B(NMe_2)C1 + Me_2NC1$$

7 2 4 + 6 (3b)

_ 2

Das unsymmetrische Chlortris(dimethylamino)diboran(4) (7) könnte durch Me_2NCl nach Gl. (3a) in zwei Moleküle (Me_2N_2BCl (3), nach Gl. (3b) in (Me_2N_3B (4) und $Me_2N - BCl_2$ (6) oder in eine Mischung von allen drei Produkten übergeführt werden. Unter milden Bedingungen wird nur (Me_2N_2BCl gebildet. Der Verlauf zeigt, daß die Base Me_2NCl am Lewis-acideren Boratom, das gleichzeitig räumlich weniger stark abgeschirmt ist, angreift. Dieses Zwischenprodukt geht in zwei Moleküle 3 über.

Beim langsamen Erwärmen einer Mischung von Tetrachlordiboran(4) (8) und Me_2NCl (2) bildet sich in einem ersten Reaktionsschritt ein $B_2Cl_4 \cdot ClNMe_2$ -Addukt. Bei

der Weiterreaktion bei Raumtemperatur wird die CH_3 -Gruppe in das Redoxgeschehen einbezogen. BCl₃ und Dimethylamin-trichlorboran, Me₂NH · BCl₃, wurden neben einem nicht flüchtigen Rückstand als Reaktionsprodukte isoliert. Wird das Gemisch der Komponenten 2 und 8 dagegen schnell auf ca. 80°C erwärmt, lassen sich BCl₃ und Me₂N – BCl₂ (6) von einem nicht flüchtigen Anteil abtrennen [Gl. (5)].

Cl₂B-BCl₂ + 2
$$\xrightarrow{20 \, \text{°C}}$$
 BCl₃, Me₂NH·BCl₃, Rückstand (4)
8
80 °C

$$8 + 2 \xrightarrow{\text{BCl}_3} \text{BCl}_3, 6, \text{Rückstand}$$
(5)

Bortrichlorid und Me₂NCl (2) ergeben in erster Stufe das Addukt Me₂NCl · BCl₃⁶), bei dessen thermischer Zersetzung BCl₃, HCl, Cl₂ und wiederum das Aminboran Me₂NH · BCl₃ entstehen. Das von *Haasnoot* zusätzlich aufgefundene Me₂N – BCl₂ konnten wir nicht nachweisen.

Einen genauen Mechanismus für den Verlauf der Aminboranbildung können wir nicht angeben. Die Anwesenheit von Lewissäuren scheint die Selbstzersetzung der Chlordialkylamine in Dialkylaminderivate zu begünstigen.

Für Tetrachlortetraboran B_4Cl_4 , das in festem Zustand Tetraedersymmetrie besitzt⁷), wird ein leichter Übergang in eine planare Anordnung angenommen⁸). Gegenüber Chlordimethylamin (2) zeigt B_4Cl_4 nur eine mäßige Reaktivität. Setzt man beide Verbindungen im Molverhältnis 1:1 um, findet man nach Tagen bei Raumtemperatur ca. 1 Moläquivalent Me₂N – BCl₂ (6) neben unumgesetztem B_4Cl_4 , während 4 Moläquivalente Me₂NCl zur Spaltung aller B – B-Bindungen führen. Ein teilweise oxidiertes Molekül wird sehr viel schneller abgebaut als das intakte B_4Cl_4 -Molekül von überschüssigem Me₂NCl angegriffen wird.

$$\begin{array}{c} & Me_2N-BCl_2 + x B_4Cl_4 \\ + Me_2NCl & \mathbf{6} \\ B_4Cl_4 \\ + 4 Me_2NCl \\ 4 \mathbf{6} \end{array}$$
(6b)

Auch B_2F_4 reagiert mit Me₂NCl; als Produkt läßt sich (Me₂N – BF₂)₂ isolieren. Allerdings konnten keine BF_mCl_n-Anteile nachgewiesen werden.

Umsetzung mit Dichlormethylamin und Dichlorethylamin

Die Oxidation der Aminodiboran(4)-Moleküle 1 und 5 durch Dichlormethylamin und Dichlorethylamin (9) setzt erst bei relativ hohen Temperaturen ein, so daß gleichzeitig eine Reihe von Folge- und Nebenreaktionen abläuft. Die Zahl der anfallenden Verbindungen wird dadurch vergrößert und eine genaue Produktanalyse erschwert. Zwei Beispiele sollen dies verdeutlichen.

Zwei mol 1 und ein mol MeNCl₂ gehen zwar in das erwartete Diborylamin $(Me_2N)_2B - NMe - B(NMe_2)_2$ über, aber neben $(Me_2N)_2BCl$ (3) sind auch $(Me_2N)_3B$ (4), $Cl(Me_2N)B - B(NMe_2)Cl$ (5) und $(Me_2N)_2B - B(NMe_2)Cl$ (7) entstanden. Getrennt durchgeführte Versuche ergaben, daß unter gleichen Bedingungen 1 und 3 durch Ligandenaustausch in 4 und 7 und daß 3 und 7 in 4 und 5 übergehen⁹.

Bei der Umsetzung von 5 und 9 [Gl. (7)] lassen sich die Produkte $(Me_2N)CIB - NEt - BCl-$ (NMe₂) und Me₂N - BCl₂ (6) spektroskopisch nachweisen. Bei der destillativen Auftrennung zersetzt sich das Diborylamin [Gl. (8)], so daß schließlich *B*-Trichlor-*N*-triethylborazin und 3 erhalten werden.

$$2 5 + \text{EtNCl}_2 \longrightarrow (\text{Me}_2\text{N})\text{ClB-NEt-BCl(NMe}_2) + 2 6$$
(7)
9

$$(Me_2N)ClB-NEt-BCl(NMe_2) \rightarrow 1/3 Cl_3B_3N_3Et_3 + 3$$
(8)

Die milderen Reaktionsbedingungen bei der Oxidation von B_2Cl_4 (8) mit EtNCl₂ (9) erlauben dagegen die Isolierung der Produkte Dichlor[chlor(ethyl)amino]boran (10) und N-Ethylbis(dichlorboryl)amin (11) [Gl. (9a) (9b)]. Das schwierig zugängliche B_2Cl_4 (8) kann effizienter zur Darstellung von 11 eingesetzt werden, wenn man nach Gl. (10) zunächst das Aminoboran 10 gewinnt⁶⁾ und dieses mit 8 weiterreagieren läßt^{*)}.

$$8 + 9 \rightarrow BCl_3 + EtNCl-BCl_2 \tag{9a}$$

 $2 8 + 9 \rightarrow 2 BCl_3 + Cl_2B - NEt - BCl_2$ (9b)

$$9 + BCl_3 \rightarrow Cl_2 + 10 \tag{10}$$

$$\mathbf{8} + \mathbf{10} \rightarrow \mathrm{BCl}_3 + \mathbf{11} \tag{11}$$

Umsetzungen mit Chlor

 B_2Cl_4 (8) und Chlor gehen bei -45 °C in glatter Reaktion in BCl₃ über²⁾. Bei der wiederum sehr viel langsameren Reaktion von 1 mit Cl₂ werden (Me₂N)₂BCl (3), (Me₂N)₃B (4) und (Me₂N)₂B - B(NMe₂)Cl (7) gebildet. Als Zwischenprodukt läßt sich zusätzlich Me₂NCl (2) spektroskopisch nachweisen und in Substanz isolieren, Gl. (12).

$$1 + Cl_2 \longrightarrow 7 + 2 \tag{12}$$

Wegen des Auftretens von 2 kann das bei der Reaktion gebildete Aminoboran 4 nicht nur durch Ligandenaustausch aus 1 und 3 entstanden sein sondern auch bei der unmittelbaren Oxidation von 1 durch 2, Gl. (1).

Die Spaltung der B – N-Bindung durch elementares Chlor unter Bildung von Me_2NCl wird auch bei einfachen Aminoboranen wie z. B. $(Me_2N)_3B$ beobachtet.

N-Ethylbis(dichlorboryl)amin

Die bei den vorstehend beschriebenen Oxidationen entstehenden Borverbindungen 3, 4 und 5 sind wohlbekannte Aminoborane. Die Eigenschaften anderer Reaktionsprodukte wie $Me_2NCl \cdot B(NMe_2)Cl_2$ oder $Me_2NH \cdot BCl_3$ entsprechen der Erwartung. Bisher nicht zugänglich waren N-Alkylbis(dichlorboryl)amine wie z. B. 11, da sie leicht in

^{*)} Da MeNCl-BCl₂ nicht entsprechend Gl. (10) hergestellt werden kann und die CH₃-Gruppe teilweise am Redoxgeschehen beteiligt war, haben wir als Dichloraminkomponente größtenteils EtNCl₂ eingesetzt.

Borazin und Bortrichlorid zerfallen [Gl. (13)]. Die bei Raumtemperatur rasch ablaufende Oxidation [Gl. (11)] ermöglicht die Isolierung von 11 als Reinsubstanz. Das Diborylamin ist bei 20 °C thermisch beständiger als erwartet. Beim Umkondensieren in der Vakuumapparatur tritt dagegen Zersetzung ein. Offensichtlich wird dabei die BCl₃-Eliminierung erleichtert.

$$11 \rightarrow BCl_3 + 1/3 Cl_3 B_3 N_3 Et_3$$
(13)

$$EtN(SiMe_3)_2 + BCl_3 \rightarrow EtN(SiMe_3) - BCl_2 + Me_3SiCl$$
(14)
12

$$12 + BCl_3 \rightarrow 11 + Me_3SiCl$$
(15)

Im Vergleich zu anderen Diborylaminen wie $(Me_2N)_2B - NMe - B(NMe_2)_2$, $Me_2B - NMe - BMe_2$ oder den erst kürzlich von *Nöth* und Mitarbeitern¹⁰ beschriebenen Verbindungen $Cl_2B - N(SiR_3) - BCl_2$ bzw. $Cl_2B - N(BCl_2) - BCl_2$ zeigen die Eigenschaften von 11, daß die Basizität an dessen N-Atom zur Koordinierung weiterer BCl₂-Gruppen und damit zur Einleitung der Borazinbildung ausreicht. Die höhere Stabilität der Diborylamine $R_3Si - N(BCl_2)_2$ geht auf die geringe Basizität am N-Atom¹⁰, die der Diborylamine $(R_2N)_2B - NMe - B(NR_2)_2$ auf die geringe Acidität am Boratom zurück. $Me_2B - NMe - BMe_2$ und 11 nehmen eine Mittelstellung ein. Allerdings dürfen sterische Einflüsse nicht ganz außer acht gelassen werden. Die Lage des ¹¹B-NMR-Signals von 11 bei 38.5 ppm ist mit der gegebenen Deutung in Übereinstimmung.

Versuche, 11 auch direkt aus BCl_3 und $EtN(SiMe_3)_2$ durch Chlortrimethylsilanabspaltung herzustellen, zeigen, daß $Cl_2B - NEt - BCl_2$ (11) zwar im Reaktionsgemisch vorliegt, aber durch große Anteile $EtN(SiMe_3) - BCl_2$ (12) oder bei Erzwingung einer vollständigen Umsetzung [Gl. (15)] bereits mit Borazin verunreinigt ist.

Wir danken dem Verband der Chemischen Industrie für die Unterstützung dieser Arbeit.

Experimenteller Teil

Alle Versuche wurden in einer Standardhochvakuumapparatur oder, im Falle zu geringer Flüchtigkeit der Substanzen, in N₂-Atmosphäre unter Ausschluß von Feuchtigkeit durchgeführt.

Für die Aufnahme der Spektren standen folgende Geräte zur Verfügung: ¹H-NMR: WP 60-, WP 80- und HFX 90-Geräte; ¹¹B- und ¹⁹F-NMR: WP 80- und HFX 90-Geräte der Firma Bruker AG. Die $\delta(^{1}H)$ -, $\delta(^{11}B)$ - und $\delta(^{19}F)$ -Werte sind auf Tetramethylsilan, Bortrifluorid-Etherat und Trifluoressigsäure als externe Standards bezogen. Positives Vorzeichen bedeutet in allen Fällen eine Tieffeldverschiebung relativ zum Standard. – Schwingungsspektren: Perkin Elmer IR-Spektrophotometer 457; Coderg Raman Spektrophotometer PH O, Anregung durch die blaugrüne (4880 Å) oder gelbgrüne (5145 Å) Linie eines Argonlasers. – Massenspektren: Massenspektrometer 111 der Fa. Varian MAT mit Lichtpunktschreiber.

Ausgangssubstanzen

Die Borverbindungen B₂(NMe₂)₄^{11,12}), B₂Cl(NMe₂)₃¹³), B₂Cl₂(NMe₂)₂¹³), B₂Cl₄¹⁴), B₄Cl₄¹⁴) und B₂F₄¹⁵) wurden in Anlehnung an bekannte Literaturvorschriften dargestellt. Das gleiche gilt für die zu Vergleichszwecken benötigten Verbindungen B(NMe₂)₃¹⁶), ClB(NMe₂)₂¹⁷), Cl₂B(NMe₂)¹⁸) und Cl₃B₃N₃Et₃¹⁹).

Tab. 1. Reaktionen mit CINMe2	Produkte	B(NMe ₂) ₃ ; CIBNMe ₂	CIB(NMe ₂) ₂ ; Cl ₂ BNMe ₂ · CINMe ₂ unverbrauchtes B,Cl ₂ (NMe ₂),	CIB(NMe2) ₂ ; Cl ₂ BNMe ₂ · CINMe ₂	Cl ₂ BNMe ₂ · CINMe ₂	ClB(NMe ₂)2 über 80%; B(NMe ₂)3; B ₂ Cl(NMe ₂)3; B ₂ Cl ₂ (NMe ₂)2	$B_2Cl_4 \cdot CINMe_2; BCl_3 \cdot HNMe_2$	0.8 mmol BCl ₃ ; 0.69 mmol Cl ₂ BNMe ₂ ; Rückst.	1.0 mmol BCl ₃ ; BCl ₃ · HNMe ₂ ; Rückst.	BCl ₃ · CINMe ₂	HCl; BCl ₃ ; Cl ₂ ; BCl ₃ · HNMe ₂ ; u. a.	Cl ₂ BNMe ₂ ; (B ₄ Cl ₄ · CINMe ₂ ?) unverbrauchtes B ₄ Cl ₄	Cl ₂ BNMe ₂ ; (B ₄ Cl ₄ · CINMe ₂ ?)	$(F_2B - NMe_2)_2$
	Reaktionsbedingungen	20 h bei 25 °C	20 h bei 25°C	20 h bei 25 °C	2 h bei 25 °C	Reaktionsbeginn bei 20°C, Gemisch erhitzte sich auf etwa 70°C	Langsames Erwärmen auf Raumtemp.	Rasches Erwärmen auf 80°C	Langsames Erwärmen auf Raumtemp.	Langsames Erwärmen auf Raumtemp.	27 h bei 80°C	72 h bei 25°C	400 h bei 25 °C	Langsames Erwärmen auf Raumtemp.
	Lösungs- mittel	1	ł	I	ccl	I	CDCI ₃	I	I	CDCl ₃	I	CDCI3	I	cDCl ₃
	CINMe ₂ Menge [mmol]	5.2	1	6.8	1.9	7.3	0.6	1.15	1.67	0.6	7	0.1	0.13	0.62
	Menge [mmol]	5.2	1	3.4	1.9	7.3	0.6	1.15	1.67	0.6	7	0.1	0.03	0.62
	Borver- bindung	$B_2(NMe_2)_4$	B ₂ Cl ₂ (NMe ₂) ₂	B ₂ Cl ₂ (NMe ₂) ₂	Cl ₂ BNMe ₂	B ₂ Cl(NMe ₂) ₃	B ₂ Cl ₄	B ₂ Cl ₄	B ₂ Cl ₄	BCI3	BCI3	B4Cl4	B4Cl4	B_2F_4

	Produkte	Me – N[B(NMc ₂) ₂]2 B2CI(NMc ₂)3; B2CI ₂ (NMc ₂)2; CIB(NMc ₂)2; B(NMc ₂)3	Me ₂ NB(CI) – N(EI)- B(CI)NMe ₂ ; Me ₂ NBCl ₂	CIB(NMe ₂)2; B ₂ Cl ₂ (NMe ₂)2 (CIBNEt)3	CIN(Et)BCl ₂ ; BCl ₃	(Cl ₂ B) ₂ NEt; BCl ₃	(Cl ₂ B) ₂ NEt; BCl ₃	B(NMe ₂)3; CIB(NMe ₂)2 B ₂ CI(NMe ₂)3; CINMe ₂	CINMe2	CINMe ₂ 6 mmol
Tab. 2. Reaktionen mit Cl ₂ NMe, Cl ₂ NEt, ClN(Et)BCl ₂ und Cl ₂	Bedingungen	Zusammengabe bei – 78°C. Nach Auftauen Reaktion bei Raumtemp.	Zutropfen der Lösung von EtNCl ₂ zur Lösung von B ₂ Cl ₅ (NMe ₂) ₂	Fraktion Sdp. 50 – 55 °C/ 10 Torr, Rückstand im Kolben	Nach Zusammenkonden- sieren langsames Auftauen auf Raumtemp.	Nach Zusammenkonden- sieren langsames Auftauen auf Raumtemp.	Bei – 196°C zusammenkon- densiert. Langsam auf Raumtemp. erwärmt. 15 min bei Raumtemp.	Bei – 196°C zusammenkon- densiert und langsam auf Raumtemp. aufgetaut.	Bei – 45 °C flüchtiger An- teil abkondensiert	Bei – 196°C zusammenkon- densiert. Auf Raumtemp. er- wärmt. Nach 1.5 h flüchtigen Anteil aufgetrennt
	Lösungs- mittel	ccl4	ccīt		CDCI ₃	CDC13	cDCI3	1		I
	Menge mmol	3.8	11.4		0.56	0.55	3.0	10.2		10.0
	N – Cl-Ver- bindung	Cl ₂ NMe	Cl ₂ NEt		Cl ₂ NEt	Cl ₂ NEt	CIN(Et)BCl ₂	Cl ₂		Cl_2
	Menge mmol	7.68	22.8		0.56	1.14	3.5	10.2		10.0
	Borver- bindung	${\rm B_2(NMe_2)_4}$	B2Cl ₂ (NMe ₂) ₂		B ₂ Cl ₄	$\mathbf{B}_{2}\mathbf{C}\mathbf{I}_{4}$	B2Cl4	$B_2(NMe_2)_4$		B(NMe ₂) ₃

Die Synthese der Chloramine ClNMe₂, Cl₂NMe und Cl₂NEt erfolgte ausschließlich nach dem von *Bock* und *Kompa*²⁰⁾ beschriebenen Verfahren aus Natriumhypochlorit und dem entsprechenden Amin. Cl₂BN(Et)Cl wurde nach den Angaben von *Haasnoot*⁶⁾ bereitet. (Me₃Si)₂NEt wurde analog dem für die Methylverbindung beschriebenen Verfahren^{21,22)} dargestellt. Die nicht optimierte Ausbeute lag zwischen 5 und 10%. Sdp. 42 °C/10 Torr. NMR (in CDCl₃): δ (¹H) = 0.1 (CH₃-Si), 1.0 (t, N-CH₂-CH₃), 2.87 (q, N-CH₂-CH₃), J = 6.8 Hz. – Die Schwingungsspektren (IR, Raman) und das Massenspektrum wurden aufgenommen⁵⁾.

Liganden austauschversuche

In einem Gemisch aus 13.7 mmol $B_2(NMe_2)_4$ (1) und 13.7 mmol $ClB(NMe_2)_2$ (3) waren kurz nach dem Zusammengeben $B(NMe_2)_3$ (4) und $B_2Cl(NMe_2)_3$ (7) nachzuweisen, nach 1 h betrug das Verhältnis 1:7 ca. 3/2.

In einem Gemisch aus 2.6 mmol $B_2Cl(NMe_2)_3$ (7) und 2.6 mmol ClB(NMe_2)_2 (3) konnte sofort nach dem Zusammengeben B(NMe_2)_3 (4) nachgewiesen werden. Hier hatten sich 37% des eingesetzten 3 zu 4 umgesetzt.

In beiden Fällen wurden auch nach längerer Zeit keine größeren Anteile der entstandenen Verbindungen erhalten.

Dichlor[ethyl(trimethylsilyl)amino]boran (12): 0.12 g (1.03 mmol) BCl₃ und 0.196 g (1.03 mmol) EtN(SiMe₃)₂ werden bei -196 °C zusammenkondensiert und anschließend auf Raumtemp. erwärmt. Dabei wird eine farblose Flüssigkeit und etwas farbloser Feststoff erhalten, der sich nach kurzem Erwärmen mit einem Fön verflüssigt. Die fraktionierende Kondensation ergibt 1 mmol Me₃SiCl und 0.19 g (92.7%) 12. – NMR: δ (¹¹B) = 32.5; δ (¹H) (in CDCl₃) = 0.33 (CH₃-Si), 1.11 (t, CH₂-CH₃), 3.33 (q, CH₂-CH₃), J = 7.1 Hz.

C₅H₁₄BCl₂NSi (197.7) Ber. Cl 35.8 Gef. Cl 33.9

Dimethylamin-Trichlorboran, $Me_2NH \cdot BCl_3$: Bei der direkten Vereinigung von BCl₃ und Me_2NH treten noch Nebenreaktionen auf^{23,24)}. Diese können umgangen werden, wenn man ein durch Zusammenkondensieren von äquimolaren Mengen BCl₃ und Me₂NH erhaltenes Gemisch in einem gasdichten Kolben 20 h auf 80 °C erhitzt. Nach dem Erkalten kann aus Chloroform umkristallisiert werden. Ausb. 90%.

C2H7BCl3N (162.2) Ber. C 14.8 H 4.3 N 8.6 Cl 65.5 Gef. C 14.7 H 4.3 N 8.6 Cl 63.9

N-Ethylbis(dichlorboryl)amin (11): 1.3 g (8 mmol) B_2Cl_4 (8) und 0.70 g (4.4 mmol) $ClN(Et) - BCl_2$ (10) werden bei - 196°C zusammenkondensiert, auf Raumtemp. erwärmt und 10 min bei dieser Temp. gehalten. Danach wird entstandenes BCl_3 abgepumpt und das zurückbleibende 11 durch Umkondensieren auf kurzem Weg von Zersetzungsprodukten abgetrennt. Rohausb. beinahe quantitativ, nach Reinigung 1.65 mmol (37.5%) 11.

NMR: δ (¹¹B) = 38.5; δ (¹H) (in CDCl₃) = 1.27 (t, CH₃), 3.74 (q, CH₂), J = 6.95 Hz. – IR (flüss.): 2990 s, 2940 s, 2925 m, 2883 m, 2835 vw, 2630 vw, 2540 vw, 2490 vw,1750 w, 1480 s, 1455 s, 1360 vs, br, 1300 s, br, 1280 s, br, 1255 vs, br, 1205 s, br, 1185 s, br, 1135 s, 1115 s, br, 1090 s, 1040 s, br, 985 s, br, 955 vs, br, 915 s, 875 s, br, 805 s, 780 m, 755 s, 740 s, 685 w, 680 w, 630 s, 605 s, br, 550 w, 520 m, 479 m, 450 s, 390 w, 325 vw, 300 cm⁻¹ m. – Raman (flüss.): 2990 m, p, 2932 m, dp, 2940 s, sh, tp, 2935 s, p, 2882 m, p, 1480 w, dp, 1456 m, dp, 1370 w, dp, 1300 vw, sh, p; 1282 m, tp, 1260 vw, dp, 1140 vw, dp, 1095 s, p, 1010 m, p, 1007 vw, sh, p, 884 w, dp, 480 m, sh, tp, 455 vs, dp, 392 vs, tp, 367 s, p, 335 m, p, 307 w, dp, 243 s, dp, 215 w, p, 190 m, dp, 158 cm⁻¹ s, dp.

C₂H₅B₂Cl₄N (206.4) Ber. B 10.5 Cl 68.8 N 6.8 Gef. B 10.7 Cl 69.5 N 6.3 (Kjeldahl)

Ausführung der Umsetzungen: Die Versuchsergebnisse von Reaktionen, bei denen keine neuen sondern bekannte Verbindungen als Endprodukte auftraten, sind in den Tabellen 1 und 2 zusam-

2341

mengefaßt. Die Ausgangssubstanzen wurden entweder schichtweise zusammenkondensiert oder, wenn die Flüchtigkeit nicht ausreichte, zusammenpipettiert. Ansatzgrößen, Reaktionsbedingungen und Endprodukte sind in den Tabellen enthalten. Die Reaktionsprodukte wurden im wesentlichen spektroskopisch (vor allem NMR- und Schwingungsspektren) identifiziert. Zu Vergleichszwecken standen von allen aufgeführten Produkten authentische Proben zur Verfügung.

Literatur

- ¹⁾ Gmelin Handbuch der Anorganischen Chemie, Erg.-Werk zur 8. Aufl., Bd. 53, Borverbindungen, Teil 19, S. 241 ff., Springer-Verlag, Heidelberg 1978.
- ²⁾ E. F. Apple und Th. Wartik, J. Am. Chem. Soc. 80, 6153 (1958).
- ³⁾ A. K. Holliday und A. G. Massay, J. Inorg. Nucl. Chem. 18, 108 (1961).
- ⁴⁾ H. Nöth und P. Fritz, Z. Anorg. Allg. Chem. 324, 129 (1963).
- 5) Genauere Angaben s. K. Zurmühl, Dissertation, Univ. Stuttgart 1979.
- ⁶⁾ J. G. Haasnoot, Dissertation, Univ. Leiden 1975.
- ⁷⁾ M. Atoji und W. N. Lipscomb, Acta Cryst. 6, 547 (1953).
- 8) W. N. Lipscomb, IME-BORON IV, Salt Lake City, U.S.A. 1979.
- 9) Vgl. auch K. G. Hancock, A. K. Uriatre und D. A. Dickinson, J. Am. Chem. Soc. 95, 6980 (1973).
- ¹⁰⁾ T. Gasparis, H. Nöth und W. Storch, Angew. Chem. **91**, 357 (1979); Angew. Chem., Int. Ed. Engl. 18, 326 (1979).
- ¹¹ R. J. Brotherton, A. L. McCloskey, L. L. Petterson und H. Steinberg, J. Am. Chem. Soc. 82, 6242 (1960).
- ¹²⁾ H. Nöth und W. Meister, Chem. Ber. 94, 509 (1961).
- 13) H. Nöth, H. Schick und W. Meister, J. Organomet. Chem. 1, 401 (19064).
- ¹⁴⁾ A. G. Massey, D. Urch und A. K. Holliday, J. Inorg. Nucl. Chem. 28, 365 (1966).
 ¹⁵⁾ A. Finch und H. I. Schlesinger, J. Am. Chem. Soc. 80, 3573 (1958).
- 16) K. Niedenzu und J. W. Dawson, Inorg. Synth. 10, 135 (1967).
- 17) E. Bessler und J. Goubeau, Z. Anorg. Allg. Chem. 352, 67 (1967).
- ¹⁸⁾ J. Goubeau, M. Rahtz und H. J. Becher, Z. Anorg. Chem. 275, 161 (1954).
- 19) I. M. Butcher und W. Gerrard, J. Inorg. Nucl. Chem. 27, 823 (1965).
- ²⁰⁾ H. Bock und K. L. Kompa, Chem. Ber. 99, 1347 (1966).
- ²¹⁾ R.O. Sauer und R. H. Hasek, J. Am. Chem. Soc. 68, 241 (1946).
- 22) R.Osthoff und S. Kantor, Inorg. Synth. 5, 58 (1957).
- ²³⁾ G. E. Ryschkewitsch und W. H. Myers, Synth. Reakt. Inorg. Metal.-Org. Chem. 5, 123 (1975).
- ²⁴⁾ H. Nöth, P. Schweizer und F. Ziegelgänsberger, Chem. Ber. 99, 1089 (1966).

[357/79]